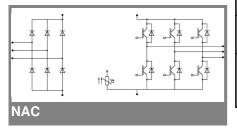


MiniSKiiP®0

3-phase bridge rectifier + 3-phase bridge inverter

SKiiP 02NAC066V3

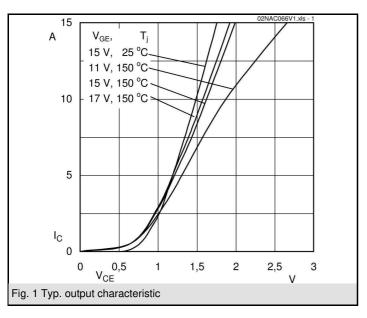
Features

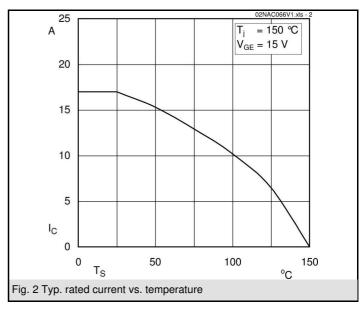

- Trench IGBTs
- · Robust and soft freewheeling diodes in CAL technology
- Highly reliable spring contacts for electrical connections
- UL recognised file no. E63532

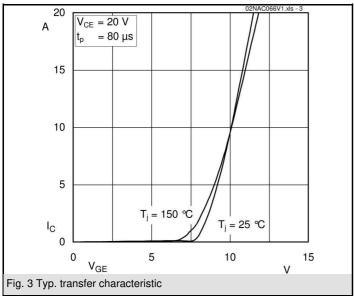
Typical Applications*

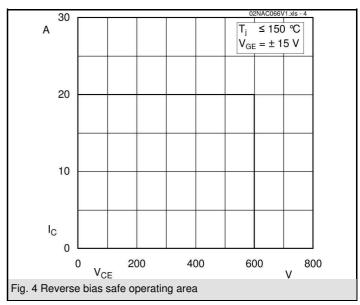
- Inverter up to 5 kVA
- Typical motor power 2,2 kW

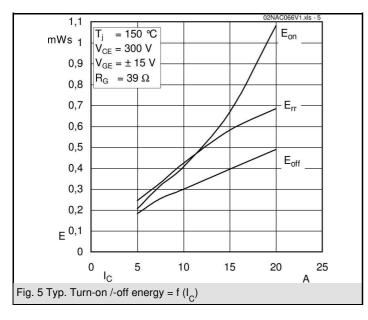
Remarks

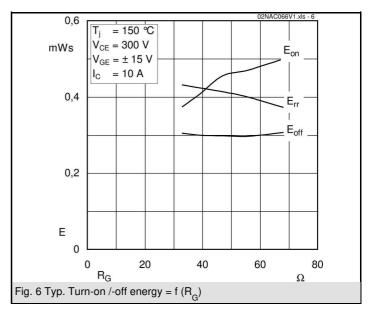

- · Case temperature limited to T_C = 125°C max.
- Product reliability results are valid for T_i=150°C
- SC data: t_p ≤ 6 µs; V_{GE} ≤15 V; T_j = 150°C; V_{CC} = 360 V
 V_{CEsat}, V_F = chip level values

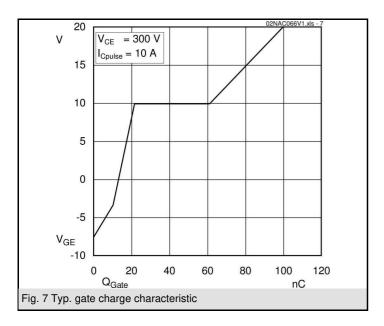


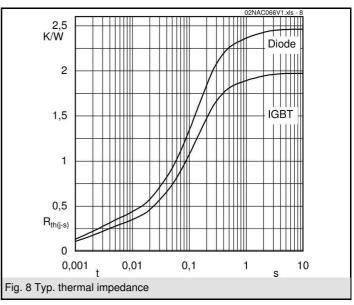

Absolute Maximum Ratings $T_S = 25$ °C, unless otherwise specified							
Symbol	Conditions	Values	Units				
IGBT - Inverter							
V_{CES}		600	V				
I _C	$T_s = 25 (70) ^{\circ}C, T_j = 150 ^{\circ}C$	19 (14)	Α				
I _C	$T_s = 25 (70) ^{\circ}C, T_j = 175 ^{\circ}C$	20 (16)	Α				
I _{CRM}	t _p = 1 ms	20	Α				
V_{GES}		±20	V				
Diode - Inverter							
I _F	$T_s = 25 (70) ^{\circ}C, T_i = 150 ^{\circ}C$	20 (15)	Α				
I _F	$T_s = 25 (70) ^{\circ}C, T_j = 175 ^{\circ}C$	20 (18)	Α				
I _{FRM}	t _p = 1 ms	20	Α				
Diode - Rectifier							
V_{RRM}		800	V				
I _F	T _s = 70 °C	35	Α				
I _{FSM}	$t_p = 10 \text{ ms, sin } 180 ^\circ, T_j = 25 ^\circ\text{C}$	220	Α				
i²t	$t_p = 10 \text{ ms, sin } 180 ^{\circ}, T_j = 25 ^{\circ}\text{C}$	240	A²s				
I _{tRMS}	per power terminal (20 A / spring)	20	Α				
T _i	IGBT, Diode	-40+175	°C				
T _{stg}		-40+125	°C				
V _{isol}	AC, 1 min.	2500	V				

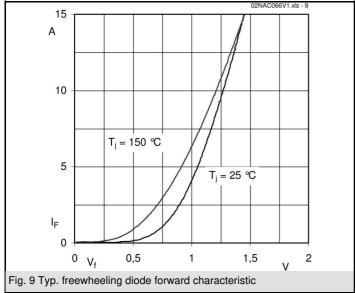

Characteristics T _S = 25°C, unless otherwise specified								
	Conditions	min.	typ.	max.	Units			
IGBT - Inverter								
V _{CE(sat)}	I _{Cnom} = 10 A, T _i = 25 (150) °C	1,1	1,45 (1,65)	1,85 (2,05)	V			
V _{GE(th)}	$V_{GE} = V_{CE}$, $I_C = 1 \text{ mA}$,	5,8	, , ,	V			
V _{CE(TO)}	T _i = 25 (150) °C		0,9 (0,7)	1,1 (1)	V			
r _{CE}	T _i = 25 (150) °C		60 (100)	80 (110)	mΩ			
C _{ies}	$V'_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$		0,58		nF			
C _{oes}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$		0,12		nF			
C _{res}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$		0,04		nF			
R _{CC'+EE'}	spring contact-chip T _s = 25 (150)°C				mΩ			
R _{th(j-s)}	per IGBT		2		K/W			
t _{d(on)}	under following conditions		25		ns			
t _r `´	$V_{CC} = 300 \text{ V}, V_{GE} = \pm 15 \text{ V}$		25		ns			
t _{d(off)}	$I_{Cnom} = 10 \text{ A}, T_j = 150 \text{ °C}$		190		ns			
t _f	$R_{Gon} = R_{Goff} = 39 \Omega$		40		ns			
$E_{on} \left(E_{off} \right)$	inductive load		0,5 (0,3)		mJ			
Diode - Inverter								
$V_F = V_{EC}$	I _F = 10 A, T _i = 25 (150) °C		1,3 (1,3)	1,6 (1,6)	V			
$V_{(TO)}$	$T_j = 25 (150) ^{\circ}C$		0,9 (0,8)	1 (0,9)	V			
r _T	$T_j = 25 (150) ^{\circ}C$		40 (50)	60 (70)	mΩ			
$R_{th(j-s)}$	per diode		2,5		K/W			
I _{RRM}	under following conditions		15,8		Α			
Q_{rr}	I _{Fnom} = 10 A, V _R = 300 V		1,5		μC			
E _{rr}	$V_{GE} = 0 \text{ V}, T_j = 150^{\circ}\text{C}$		0,5		mJ			
	$di_F/dt = 810 \text{ A/}\mu\text{s}$							
Diode - Rectifier								
V_{F}	I _{Fnom} = 15 A, T _j = 25 °C		1,1		V			
V _(TO)	$T_{j} = 150 ^{\circ}\text{C}$		0,8		V			
r _T	$T_{j} = 150 ^{\circ}\text{C}$		20		mΩ			
R _{th(j-s)}	per diode		1,5		K/W			
Temperature Sensor								
R _{ts}	3 %, T _r = 25 (100) °C		1000(1670)		Ω			
Mechanic	al Data	•			•			
w			21,5		g			
M _s	Mounting torque	2		2,5	Nm			

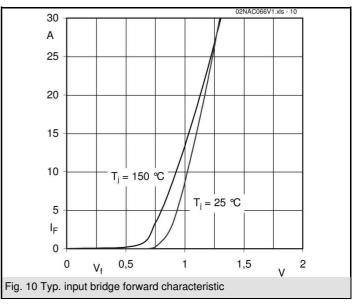

© by SEMIKRON

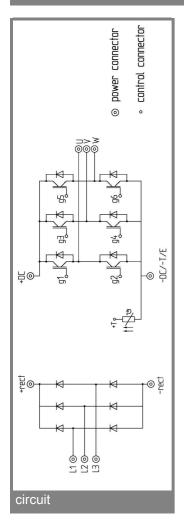


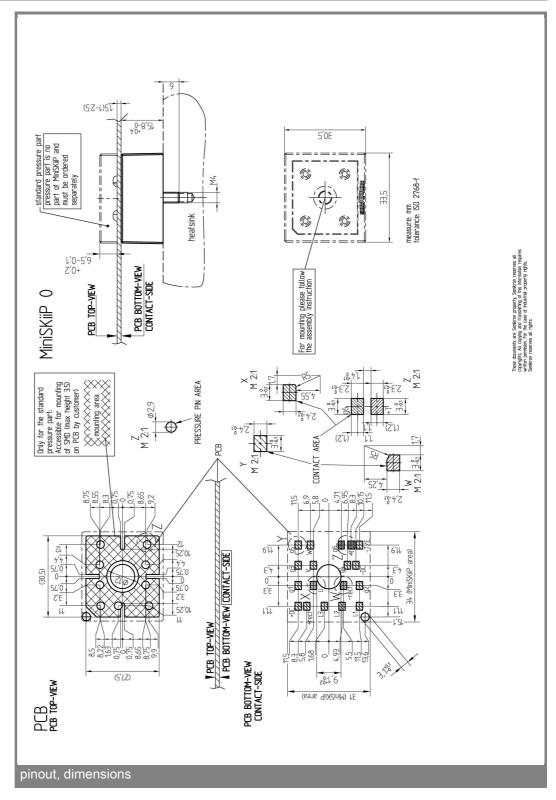












3 13-02-2009 LAN © by SEMIKRON

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

^{*} The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.